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A B S T R A C T

An increase in pupil size is an important index of listening effort, for example, when listening to speech masked by noise. Specifically, the pupil dilates as the signal-
to-noise ratio decreases. A growing body of work aims to assess listening effort under naturalistic conditions using continuous speech, such as spoken stories.
However, a recent study found that pupil size was sensitive to speech masking only when listening to sentences but not under naturalistic conditions when listening to
stories. The pupil typically constricts with increasing time on task during an experimental block or session, and it may be necessary to account for this temporal trend
in experimental design and data analysis in paradigms using longer, continuous stimuli. In the current work, we re-analyze the previously published pupil data,
taking into account a problematic constraint of randomization and time-on-task, and use the data to outline methodological solutions for accounting for temporal
trends in physiological data using linear mixed models. The results show that, in contrast to the previous work, pupil size is indeed sensitive to speech masking even
during continuous story listening. Furthermore, accounting for the temporal trend allowed modeling the dynamic changes in the speech masking effect on pupil size
over time as the continuous story unfolded. After demonstrating the importance of accounting for temporal trends in the analysis of empirical data, we provide
simulations, methodological considerations, and user recommendations for the analysis of temporal trends in experimental data using linear mixed models.

1. Introduction

Speech masked by background noise reduces intelligibility and in-
creases listening effort. Typically, when listening to masked speech,
larger pupil sizes are observed as the signal-to-noise ratio (SNR) de-
creases, that is, as listening effort increases (up to a point when listening
becomes impossible; Wendt et al., 2018; Zekveld and Kramer, 2014).
This sensitivity of the pupil size to listening effort is a well-established
finding (for review see, for example, the 2018 collection of articles in
Hearing Science, including Naylor et al., 2018; Winn et al., 2018; Zek-
veld et al., 2018). In a recent publication, Cui and Herrmann (2023)
demonstrated that fixation duration and spatial gaze dispersion eye
movement measures are also sensitive to speech masking during sen-
tence listening (experiments 1 and 2) and story listening (experiment 3).
Pupil size was found to be sensitive to speech masking during sentence
listening (cf., Cui and Herrmann, 2023), but surprisingly not during
story listening. The absence of a signal-to-noise ratio (SNR) effect on
pupil size during story listening was attributed to the absence of baseline

normalization (i.e., centering around the mean of a baseline period)
because for continuous stories no neutral, speech-devoid time period
was available (Cui and Herrmann, 2023). The authors concluded that
the lack of sensitivity of the pupil size to speech masking may highlight
“challenges with pupillometric measures for the assessments of listening
effort during naturalistic speech listening.” (Cui and Herrmann, 2023).
Here, we would like to review two potential shortcomings in the design
and analysis of the reported experiment 3 and present a re-analysis of
the pupillometry data that addresses these shortcomings. We will show
that by accounting for temporal trends in the data analysis, the data
favor a conclusion that speech masking does indeed increase pupil size
and that thus pupillometry may be used to assess listening effort during
story listening. In the theoretical part, we will summarize some rec-
ommendations for analyzing temporal trends in experimental data with
linear mixed models.
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2. Empirical part: data re-analysis

2.1. Pupil size and time-on-task temporal trend

In experiment 3 of the study by Cui and Herrmann (2023), in-
dividuals listened to two continuous podcast stories of ~10min dura-
tion. Stories were masked by background babble noise at 5 different
SNRs: − 4, +1, +6, +11, and +16 dB SNR. The SNR level changed
seamlessly every 28 s to one of the five levels, leading to overall 22
segments of 28 s duration (in the following referred to as “trials”). The
order of SNR levels was randomized with the constraint that the
experiment started and ended with the +16 dB SNR level to enable the
listener to understand the beginning and end of the story. Each SNR level
was presented four times, with the exception of the +16 dB SNR level,
which was presented six times (four plus the beginning and end). The
two stories were presented in two conditions. In the “intact” condition,
the story was presented in the original temporal order. In the “scram-
bled” condition, the story was cut into short phrases and sentences and
shuffled prior to adding background babble. Pupil size was averaged
across time points per SNR level and story type (“intact”, “scrambled”;
effectively removing any information about temporal order or trends). A
linear regression function predicting pupil size from SNR level was fitted
per participant and story type and tested against zero using one-sample t
tests per story type and dependent sample t tests between story types.

Critically, pupil size can change with the time passing during an
experimental session (for a summary see, Fink et al., 2023; Martin et al.,
2022; McLaughlin et al., 2023; Unsworth et al., 2019; van den Brink
et al., 2016; but see Murphy et al., 2011) and this may have not been
sufficiently considered in Cui and Herrmann (2023). Typically, a
reduction in the pupil size is most prominent within the first minutes of
an experiment. If the pupil size changes over time while a participant
listens to a story, the constraint that the story always begins with a
specific condition, such as the highest SNR level (+16 dB SNR), could

introduce a bias into the results. Specifically, in experiment 3 of Cui and
Herrmann (2023), the highest SNR level was systematically presented at
a time when pupil size may have been generally large. Although the
authors included the highest SNR level also at the end of a story, this
may not be sufficient to balance the highest SNR level at the beginning,
because the largest pupil-size reduction with time passing typically oc-
curs within the first few minutes. As a result, the average pupil size for
the highest SNR level could have been systematically increased, which
would counteract the expectation that this SNR level requires less
listening effort and should therefore be associated with a smaller pupil
size. That is, the temporal trend in the data could explain the unexpected
result of increased pupil size in the highest SNR condition in the original
publication. An analysis accounting for temporal trends in the data may
help reveal SNR effects on pupil size.

We have re-analyzed the data replicating the original pre-processing
to the best of our knowledge to analyze the effects of time-on-task during
story listening (with the exception of the correction of pupil fore-
shortening error by regression as several of the per participant and story
type regression models gave implausible results). The change in pupil
size per story type (“intact”, “scrambled”) over trials is displayed in
Fig. 1. On average the mean pupil size decreased by about 25% from
trial 1 to trial 22. A decline of the pupil size during listening to the story
was observed in all participants and for both story types except for three
participants which showed a small positive change in the “scrambled”
story (Fig. 1 Panel B). That is, the constraint to present+16 dB SNR level
in trial 1 could have introduced an upward bias in the estimated pupil
size for this SNR level.

2.2. Growth curve modeling the time-on-task temporal trend

The results presented above show a trend for the pupil size, such that
it decreased with increasing time in the experimental block. This raises a
question about the extent to which the change in pupil size over time

Fig. 1. The observed pupil size significantly decreased during the block in both story types. The grand-average mean pupil size per trial and story type is displayed in
Panel A. Panel B illustrates the linear trend for trial estimated from a mixed effects model in which pupil size was allowed to vary quadratically over trials. The linear
term can be interpreted as the change of pupil size per trial separately for each story type (large, solid dots), including individual estimates (random effects) of the
linear trend for trial (transparent dots) and the trial × story type interaction effect (gray lines).1 Shaded areas and error bars display 95 % CIs. The trial × story type
interaction effect was neither significant for the linear nor for the quadratic term.

1 Technically, this linear term corresponds to the expected conditional change of pupil size from trial to trial in the middle of the experiment. Here, due to the
balanced design, the linear term may also be interpreted as the average (i.e., marginal) expected change from trial to trial across all trials and participants.
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may obscure the speech-masking effects of interest. Systematic effects of
variables such as time-on-task can be accounted or corrected for by
either removing temporal trends for each experimental block and
participant prior to further analysis (but missing potential interaction
effects) or by including them as covariates in regression models (see for
example, Alday, 2019, for a derivation in the framework of the general
linear model).

We aim for a more general treatment of the approach, including
recommendations in the second part of the current work. We have re-
analyzed the data from experiment 3 of Cui and Herrmann’s study
with a linear mixed model (LMM) predicting pupil size (mean pupil area
per 28 s trial) including story type as dummy coded fixed effect (0 =

“intact”; 1 = “scrambled”), and SNR level (− 4, +1, +6, +11, +16 dB;
centered around the mean SNR) and trial number (1–22; centered
around the midpoint of the experiment; including linear and quadratic
terms) as continuous covariates (pupil_area ~ snr_centered * story_type
+ trialnr_centered * story_type + I(trialnr_centered^2) * story_type + (1
+ story_type + trialnr_centered + I(trialnr_centered^2) | subj); R-code
used for model estimation and figure generation can be found online at
https://github.com/widmann/cui2023exp3_reanalysis). We opted to fit
a raw polynomial model instead of an orthogonal polynomial model
because we were explicitly interested in the conditional effect of the
experimental condition. It is important to note that both the raw poly-
nomial and orthogonal polynomial models fit equivalent temporal
trends. Therefore, this choice primarily affects the interpretation of the
model parameters (Mirman, 2014). Critically, any bias introduced by
the fixed SNR level of the first and the last trial is also implicitly
accounted for by including trial as a covariate in the model.

Accounting for the linear and quadratic effects of trial including their
interaction with story type, the growth curve model estimated a sig-
nificant change of − 10.3 units/SNR level (95 % CI [− 17.6 − 3.0], p
=.006) for the “intact” story and a non-significant change of +5 units/
SNR level (95 % CI [–2.3 12.3], p =.177) for the “scrambled” story. The
SNR level × story type interaction was significant (+15.3 units/SNR

level; 95 % CI [5.0 25.6], p =.004). Fig. 2 (Panel A) illustrates the pre-
dicted pupil size for each type of story and SNR level.2 Please note that
we displaymarginal values (i.e., “averaged” over trials; see below) which
are adjusted for the influence of the variable trial number.

2.3. Modeling the change in the SNR-effect with the time-on-task trend

van den Brink and colleagues (2016) reported that periods during
which pupils were constricting were characterized by better perfor-
mance (e.g., lower reaction times and less false alarms) compared to
periods during which pupils were stable or dilating. That is, the tem-
poral derivative of the pupil size had a linear relationship with behav-
ioral performance. In the framework of the adaptive gain theory, pupil
constriction might indicate a transition from a tonic to a phasic mode in
Locus coeruleus (Gilzenrat et al., 2010). Here, the observed reduction in
pupil size during the first half of a story-listening block compared to the
relative stability of pupil size during the second half of the block might
also imply a change in effort. Such a change in effort should be reflected

Fig. 2. In the “intact” story type, a significant decrease of − 10.3 pupil size units per +5 dB change in SNR was estimated by the model. In the “scrambled” story type,
a non-significant increase of 5 pupil size units per +5 dB change in SNR was estimated. Panel A illustrates the predicted pupil size for each type of story and SNR
level. Please note that we display marginal values (i.e., “averaged” over trials) which are adjusted for the influence of the variable trial number. Panel B illustrates the
estimated SNR effect, that is, the change in pupil size per +5 dB change in SNR for each story type (large, solid dots) including individual estimates of the SNR effect
(transparent dots) and the individual differences in the SNR effect between story types (i.e., the interaction effect; gray lines). Shaded areas in Panel A reflect the
standard error estimates within the average person (for better comparability with Fig. 9 in Cui and Herrmann, 2023, who removed between participants variance for
display). They were obtained by first computing the estimates and standard errors in Panel A separately for each participant, and then averaging these values across
participants. Error bars in Panel B display 95 % CIs.

2 Originally, we estimated the LMM in a frequentist framework using
(restricted) Maximum-Likelihood estimation. Due to convergence issues of the
estimation process, it was not possible to include a random effect for the SNR
level × story type interaction effect (i.e., to allow for the interaction effect to
vary across participants). In order to illustrate the distributions of the estimated
SNR effects per story type and the interaction corresponding to Figure 9 in the
original publication (Cui and Herrmann, 2023), we have re-fitted the model as a
Bayesian LMM (brms R-package, Bürkner, 2017). This allowed us to circumvent
the estimation issues. We used the default minimally informative priors. None
of the estimated effects and CIs substantially differed from the frequentist
models. We set the number of iterations to a total of 100000 (from 4 chains).
Convergence of the Markov Chain Monte Carlo-sampler was established using
potential scale reduction, effective sample size estimates as well as visual in-
spection of trace plots. All measures agreed that the models converged
successfully.
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in a change in the effect of SNR on pupil size with increasing trial
number. We have therefore fitted another Bayesian LMM, also including
the three-way interaction SNR level (− 4, +1, +6, +11, +16 dB) × story
type (“intact”, “scrambled”)× trial (1− 22). The data strongly supported
the model including the three-way interaction compared to the model
including only the two-way SNR level× story type and trial× story type
interaction effects (BF = 406452.8). The SNR level × story type × trial
interaction was significant (–1.7 units/trial; 95 % CI [–3.2 –0.1]). The
model estimated a significant change of the SNR effect over trials of
+1.3 units/trial (95 % CI [0.2 2.4]) for the “intact” story and a
non-significant change of the SNR effect over trials of –0.4 units/trial
(95 % CI [–1.4 0.7]) for the “scrambled” story. In other words, the
observed (conditional) effect of SNR on pupil size for the “intact” story
was present and strong at the beginning of the story and declined to-
wards zero at the end of the story. This relation is visualized in Fig. 3.

The observed change in the effect of SNR on the pupil size over time-
on-task for the “intact” story may reflect either a true change in the effort
invested during story listening or a change in sensitivity of the pupil size
over time. In a corresponding model fitted to the fixation duration data,
which Cui and Herrmann (2023) also showed to be sensitive to listening
effort, we also observed a significant decrease in the SNR effect on fix-
ation duration with time-on-task. Therefore, we suggest that the
decrease in the SNR effect with time-on-task for pupil size reflects a true
change in effort (e.g., due to practice, motivation, etc.) rather than a
change in the sensitivity of pupillometry.

The ability to study listening effort under naturalistic conditions
using pupillometry is a promising advance for the field. Story-like
speech materials resemble more closely listening conditions in
everyday life than traditional sentence paradigms (Bohanek et al., 2009;
Mullen and Yi, 1995), where speech follows a coherent narrative thread,
and the listener is typically intrinsically motivated to comprehend.
Moving towards investigations of listening under naturalistic conditions
is further important, because not all speech-perception effects typically
investigated with isolated sentences actually generalize to naturalistic
speech materials (Irsik et al., 2022). Moreover, assessing listening effort
during story listening rather than for disconnected sentences can in-
crease participant compliance, because story materials tend to be highly
absorbing and enjoyable (Herrmann and Johnsrude, 2020), enabling
examinations of listening effort including its dynamics depending on
various variables, such as motivation and interest, speech materials, age,
and many others.

In summary, we conclude that pupillometry is sensitive to speech
masking during both sentence listening tasks (Kadem et al., 2020; Wendt
et al., 2016; Zekveld et al., 2019) and during story listening (current
analyses). As shown here, the temporal dynamics of listening effort,
which change over time in naturalistic settings, can be modeled using
pupillometry. The current analyses show that pupillometric measures
may index listening effort during naturalistic speech listening.

3. Theoretical part: consideration of temporal trends in data
analysis

3.1. Temporal trends in experimental data

Essentially, experimental data sets can be considered longitudinal
data because there are typically multiple measurements (e.g., trials)
from each participant and these measurements have a natural temporal
order (e.g., trial 1, trial 2, etc.). In the past, these measurements have
often been aggregated across trials to cope with the limitations of data-
analytic approaches. Recognizing this longitudinal nature of experi-
mental data offers the opportunity to analyze them as a time series,
which enables asking new, interesting questions regarding psychologi-
cal processes. Linear Mixed-effect models (LMMs) allow for analyzing
experimental data while avoiding aggregation and have become a
standard tool for the statistical analysis of data sets from experimental
linguistics to psychology (DeBruine and Barr, 2021). They are

well-suited to model longitudinal relationships (see e.g., Raudenbush
and Bryk, 2002, chapter 5). Typically, participants serve as the
higher-order clustering variable (“second level”) whereas trials repre-
sent the units of observation for which the outcome such as response
time varies (“first level”). In the following, we will describe in more
detail why it is important to consider psychological experiments from a
time series perspective. We will provide guidance how this can be ach-
ieved in the framework of mixed-effect models. Note, however, that
LMMs are not the only tool to account for trends. For instance, detrending
before further analysis is common in many research areas and may also
be effective as long as the trend is equal across conditions as will be
explained below (but see, Raffalovich, 1994).

In multi-level time series data, various effects may emerge (see for
instance, McNeish and Hamaker, 2020, for an overview). These effects
can be categorized as follows (Box et al., 2015): (1) temporal trends, that
is, changes in the mean of the outcome over time (e.g., pupil size de-
creases over time), (2) seasonal effects, that is, mean changes that occur
with a regular rhythm and a certain time interval (e.g., RT follows a
sinusoidal pattern due to fluctuations of the participants’ arousal), (3)
covariate effects on the outcome either on a participant-level (“between”
or time-invariant covariates; e.g., participants with a larger average
pupil size tend to have faster RTs) or on the trial-level (“within” or
time-varying covariates; e.g., participants respond faster in trials with a
concurrent large pupil size), (4) dynamic effects, that is, lagged effects of
covariates or the outcome of itself from previous time points (e.g., the
larger pupil size in trial i, the faster RT in trial i + 1). Dynamic effects
may be (4a) autoregressive effects acting on the level of the original
values of the variables (e.g., the slower the raw RT value of trial i, the
slower the raw RT in trial i+ 1), (4b) residual autoregressive effects acting
on the residuals (i.e., the difference from the model-predicted values, e.
g., the slower the residual RT in trial i the faster residual RT in trial i+1),
or (4c) moving average effects where the outcome value depends on
previous residuals (e.g., the slower the residual RT in trial i the faster
raw RT in trial i +1). All these effects are potentially interesting
depending on the experimental setup and have been investigated oc-
casionally (Bonmassar et al., 2023; Kristjansson et al., 2007; LoTemplio
et al., 2021; Tremblay and Newman, 2015; Volkmer et al., 2022).
Different effects may occur concurrently depending on the phenomenon
under investigation and neglecting any of them can lead to erroneous
conclusions. For instance, it may be important to control for autore-
gressive residuals in addition to temporal trends (van Rij et al., 2019).
Such complex scenarios may be investigated in the framework of Dy-
namic Structural Equation Models (Thorson et al., 2024), but a detailed
treatment of these models is beyond the scope of this comment paper.
For the remainder of this article, we will focus on temporal trends
because the original analysis of Cui and Herrmann (2023) would have
benefited from incorporating temporal trend.

Why should rigorous experimentalists bother with temporal trends in
the first place? After all, hasn’t careful randomization addressed any
potential confounders (refer to Thul et al., 2021, for a similar argu-
ment)? To understand the impact of unaccounted temporal trends in
experimental settings, it is crucial to differentiate whether these tem-
poral trends are consistent across experimental conditions. Fig. 4 shows
simulations for an outcome variable (e.g., pupil size) for 100 trials and
two experimental conditions A and B to illustrate two scenarios: In the
first scenario (illustrated in Fig. 4, Panel A), a temporal trend is present
in both condition A and condition B (depicted by colored curves). In
other words, the outcome variable decreases over time for both condi-
tions. In the second scenario (illustrated in Fig. 4, Panel C), temporal
trends differ between condition A and condition B, with a strong tem-
poral trend in condition A (blue curve) and a weak temporal trend in
condition B (green curve). In the first scenario, the experimental effect
(i.e., the difference between the blue and the green curve) is constant
over time (Fig. 4, Panel B), whereas, in the second scenario, it decreases
over time (Fig. 4, Panel D).
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3.2. Consequences of ignoring temporal trends

There are two potential perspectives on the condition effect that can
differ when viewing an experimental block or session as longitudinal:
Our re-analysis above showed that the SNR effect on the pupil size was
larger for early compared to late trials (in fact, absent for the last quarter
of the “intact” story). The average across all trials was a mixture of SNR
effects for earlier and later trials. The right-hand column compares these
two perspectives more formally by computing the condition effect in
different ways: The solid line indicates the conditional effect, which is
determined by the difference in average outcomes between conditions
within the same trial. The dashed line represents the marginal effect,
defined as the difference in average outcomes across all previous trials
up to the current trial, for the specific condition. In other words, the
marginal effect is what one would analyze when comparing conditions
means across an experiment of that length (without considering the
temporal trend). That is, the marginal effect represents the average
difference between the conditions that one would obtain from an
experiment with the respective trial number. Note that the conditional
and the marginal effect are equivalent when the temporal trend is
identical across conditions (top row), whereas they differ and change
over time when temporal trends differ between conditions (lower row;
see Fitzmaurice et al., 2011, for a similar discussion in a more general
context of longitudinal data modeling). That is, one would find smaller
condition effects in longer experiments in the second scenario.

How much temporal trends affect the conclusions that can be drawn
from analyses depends on whether the behavior of the outcome variable
in a specific experiment aligns more with the first or the second scenario.

In the first scenario, an analysis which does not account for the temporal
trend can still estimate the experimental effect correctly as long as the
presentation of the conditions if fully randomized across time. If trials
are randomly assigned to any of the conditions, the marginal mean
difference between the conditions reflects the true difference between
the curves. However, depending on the experimental context, it can be
impossible to fully randomize the presentation of stimuli and conditions
across time. For example, Cui and Herrmann (2023) fixed the SNR of the
first and the last presented story segments to the highest level in order to
enable their participants to understand the beginning and end of the
story. Similarly, full randomization across time can be incompatible
with the experimental task whenever the order of stimulus presentation
is crucial. Imagine that the first 20 trials originate from condition B due
to an experimental constraint, for example, familiarization trials. In such
a case of partial randomization, time and condition are confounded (i.e.,
the predictors correlate) and the mean difference between the condi-
tions would be underestimated. Hence, when full randomization is not
feasible, time and condition predictors might be correlated and
including time in the statistical model is necessary for accurate esti-
mation of the condition effect (Steyer and Schmitt, 1994).

Even if randomization or counterbalancing has addressed potential
temporal trends, there are additional reasons to consider time as a
predictor. First, even if the estimate of the condition effect is not biased
in a specific study, other parameters of the model may still be biased. For
instance, it has been shown that the extent to which participants differ in
their individual condition effects can be overestimated in the presence of
unaccounted trial-level effects such as temporal trends (Barr, 2013; Barr
et al., 2013; Bauer and Cai, 2009; Thul et al., 2021). Second, controlling

Fig. 3. A significant decrease of pupil size with increasing SNR was observed in the first and second quarter of the block for the “intact” story (cf., 95 % CI illustrated
in panel B). Panel A illustrates the predicted pupil size for each type of story and SNR level separately for each quarter of the block. Please note that we display
marginal values (i.e., “averaged” over trials) which are adjusted for the influence of the variable trial number. Panel B illustrates the model implied change in pupil
size per SNR level per trial and story type. The effect of SNR level on pupil size significantly decreases with time-on-task in the “intact” story condition.
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for temporal trends by incorporating them into the statistical model can
increase statistical power when testing for condition effects (Thul et al.,
2021). We illustrated this in a simplistic simulated data set in Fig. 5 for a
more intuitive understanding. The two panels contrast the results of
mean comparison before and after accounting for a temporal trend.
Importantly, although both analyses arrive at the same estimates for the

condition averages, the confidence intervals are much narrower after
accounting for the trend. This phenomenon is well-known in regression
analysis. Including meaningful predictors in the model consistently re-
duces the residual variance of the outcome variable and, hence, reduces
the standard error for other effects of interest (see, e.g., Fahrmeir et al.,
2013). Therefore, controlling for known temporal trends enhances the

Fig. 4. Illustrating the potential impact of time for two edge cases. Top row: The temporal trend is identical across conditions (Panel A, blue and green solid lines).
Consequently, neither conditional (difference between the lines in the left plot) nor marginal condition effect (difference in cumulative means between conditions up
to the respective trial) vary over time (Panel B). Bottom row: The temporal trend differs between conditions (Panel C). Conditional and marginal effects are not
equivalent anymore and depend on the time (Panel D). Put more simply, the marginal effect represents the average difference between the conditions that one would
obtain from an experiment with the respective trial number. That is, one would find smaller condition effects in longer experiments.

Fig. 5. Illustrating the potential power increase by accounting for temporal trends. We simulated data according to the first scenario with an identical temporal trend
across conditions (Panel A, green and blue solid lines). Each dot represents the outcome value for a specific trial within a single participant. (For the sake of simplicity,
we refrained from simulating data from multiple participants). The colored square dots represent the marginal means for both conditions and their corresponding
95 % CIs. In Panel A, the marginal means were computed from the original data without accounting for the temporal trend. In Panel B, the trend was first
approximated by a fourth-order polynomial. Then, the residuals of this model were used (for better visual comparability, we added the grand-mean of the outcome to
the residuals) and the same analysis was repeated. Note that the same marginal means were estimated in both panels, but the CIs are much narrower after detrending
(Panel B), reflecting an increase in statistical power for tests of mean differences. Adding time as a predictor to the model achieves the same but without the need for a
two-step procedure (and allows detecting changes of condition effects over time, that is, interactions of condition effects with temporal trends).
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statistical power for the effects that researchers are genuinely interested
in, even in the first scenario.

Beyond these arguments, the impact of temporal trends on the results
of data analyses is even greater in the second scenario where temporal
trends differ between conditions (Fig. 4, Panel C). As outlined above,
conditional means and marginal means differ systematically in that case
if the experimental effect varies over time. This is potentially problem-
atic for substantive conclusions because the marginal effects can become
uninterpretable or misleading. For instance, in our example in Fig. 4,
researchers would systematically find smaller effects in longer experi-
ments with more trials–even if they tried to account for temporal trends
in their experimental design with full randomization. In the case of
differential temporal trends between conditions, experimental effects
should be interpreted conditional for specific times points. To model the
(conditional) experimental effect at arbitrary time points within the
experiment, it is necessary to model an interaction effect between the
condition effect and time in the statistical model (as in our re-analysis of
Cui and Herrmann, 2023). For a more intuitive grasp, this situation
closely resembles a phenomenon in analyses of variance: Imagine,
condition and time as binary predictors (e.g., first vs. second half of the
experiment). If there is no interaction between the predictors, one may
safely interpret the marginal mean difference (“main effect”) between
the cells of the single predictors (e.g., the marginal mean difference of
the conditions averaged over experiment halves). However, if there is an
interaction effect, caution is advised and researchers need to investigate
the conditional (or “simple”) effects of the predictors within the cells of
the other predictor, that is, the conditional effects of the predictors.

Considering the high prevalence of temporal trends within experi-
mental sessions (Dignath et al., 2019; Gouret and Pfeuffer, 2021;
Langner et al., 2010; Volkmer et al., 2022; Wetzel et al., 2021), we
strongly recommend routinely exploring temporal trends as part of the
statistical analysis. Otherwise, the length of the experiment may become
a hidden moderator, and findings may be inconsistent across studies
(Volkmer et al., 2022; Wetzel et al., 2021). Apart from a technical
perspective, the investigation of temporal trends in experimental effects
offers new interesting insights (Baayen et al., 2022). For instance, it was
found that participants from various age groups mainly differ in the
temporal trends of their distraction effects (Volkmer et al., 2022; Wetzel
et al., 2021). An interaction between time and condition can represent
various psychological processes. Depending on the experimental
context, it may provide insights into learning processes (e.g., “Are
younger participants slower to learn to shield against behavioral
distraction than older participants?”), arousal fluctuations (e.g., “Does
quicker habituation of changes in pupil size across time reveal mean-
ingful neurophysiological differences between participants?”), or assist
in characterizing the processes related to different outcome measures (e.
g., “Do changes in pupil size and response time exhibit similar or distinct
temporal trends?”). In conclusion, exploring experimental effects in
relation to time and other inter-individual variables may provide
genuinely new insights into the underlying processes and prevent mis-
interpretations of marginal effects (Baayen et al., 2022).

3.3. Accounting for temporal trends with mixed effect models

After emphasizing the importance of considering temporal trends in
experimental psychology, we would like to conclude by offering guid-
ance on how to approach this. Although we recognize a need for an
accessible introduction to advanced statistical modeling options, a
detailed tutorial is beyond the scope of this article. As mentioned, mixed
effect models are not the only data-analytic approach to account for
trends. Nevertheless, we would like to briefly summarize some options
within this framework for readers who want to gain a deeper under-
standing of the methods used in our re-analysis and point these readers
to available implementations in the open statistical software R
(R-Core-Team, 2022). Three prominent options exist for modeling
temporal trends with mixed effect models, which also allow effects to be

non-linear and heterogeneous across participants (see, Beller and Baier,
2013): (1) exact parametric mixed-effect models, (2) approximate linear
or polynomial mixed-effect models, (3) semi-parametric mixed-effect
splines (also known as generalized additive linear mixed models,
GAMMs).

Exact parametric models require precise knowledge regarding the
functional form of the temporal trend because they try to estimate a
specific functional form of the temporal trend. For instance, one may
model an exponential decay or a sinusoidal fluctuation of the outcome if
the underlying theory predicts it (Lindstrom and Bates, 1990). This can
be achieved in the R packages nlme and brms (Bürkner, 2017; Pinheiro
et al., 2023). However, these models are notoriously hard to estimate,
and precise knowledge of the functional form is rarely available.
Approximate models address this by fitting a linear or polynomial rela-
tionship of the outcome variable with time. That is, using an approxi-
mate model, researchers admit that the true functional form is unknown
and try to fit a “good enough” alternative function to the data. In theory,
with increasing order of the polynomial, arbitrarily complex temporal
trends could be approximated given sufficient data. These models are
also referred to as growth curve models in the literature (Kristjansson
et al., 2007) and can be estimated, for instance, in lme4, nlme or brms
(Bates et al., 2015; Bürkner, 2017; Pinheiro et al., 2023). Linear or
polynomial growth curve models are easy to implement and compre-
hensible as long as the degree of the polynomial is rather low (say third
or fourth order). It is easily possible to derive characteristic points of the
trend from them including corresponding inferential statistics and in-
dividual estimates for participants (McCormick, 2023). Even more
complex non-linear relationships are more easily modeled using splines.
Splines are a class of semi-parametric models that are able to approxi-
mate arbitrarily complex smooth relationships including arbitrarily
complex interactions (Baayen et al., 2022). They are typically inter-
preted using graphical illustrations of the modeled relationships such as
contour plots or by deriving characteristic points on the curves. They
offer a highly flexible data-driven modeling approach, but they are
harder to interpret, especially if many continuous predictors are
involved. Mixed-effect splines are implemented in the packages gamm4
and brms (Bürkner, 2017; Wood and Scheipl, 2020).

In sum, all mentionedmodeling approaches can account for temporal
trends and the choice of the modeling approach ultimately depends on
the analysis goals. In our re-analysis of the data from Cui and Herrmann
(2023), we did not have specific expectations regarding the form of the
trend (except that we expected a non-linear decrease of pupil size over
time). Therefore, we used the second approach and fit a polynomial
growth curve model to the data. Model comparisons revealed that a
second-order polynomial was sufficient to capture the decrease in pupil
size and higher-order polynomials did not improve the model fit any
further. Furthermore, the temporal trend was rather consistent across
participants. Based on these results, we would not expect much gain
from the increased complexities of a spline-based analysis.

4. Conclusion

In many experiments, the outcome variable of interest may be
affected by time, order, repetition, or other longitudinal confounding
factors. Using the data of Cui and Herrmann (2023), we demonstrated
that this can significantly affect the conclusions that are drawn from the
data. Our re-analysis shows that the pupil size increases as speech
masking increases, even during continuous story listening. Moreover,
we show through simulated examples that explicitly modelling temporal
trends during data analysis can avoid biases, increase power, and gain
insight into the temporal dynamics of experimental effects. We hope to
raise awareness of the presence of temporal trends in experimental data,
their impact on outcome variables (e.g., such as the pupil size), and
provide recommendations for modeling approaches.
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